
jsFLAP
A JavaScript Formal Languages and Automata 

Package for Computer Science Education

Elijah Cirioli



Background
Visualization in computer science education



Visualization in education

● Interactive visualization and simulation serve an important role 
in the education of abstract topics

● They complement more traditional learning materials rather 
than replacing them

● They allow students to engage with concepts very directly, 
applying what was once highly theoretical



● In computer science education, visualizations can be especially 
important

● A model for how this is done is called Visualization-Reinforced 
Instruction (VRI)*
○ “A form of active learning, in which traditional instructional 

material is complemented and enhanced with carefully 
designed animations and simulations of key concepts, models, 
and algorithms”

Visualization in education

*M. Quweider and F. Khan, “Visualization as effective instructional and learning tools in the Computer Science 
Curriculum,” 2017 ASEE Annual Conference & Exposition Proceedings, 2017.



Benefits of visualization

● Researchers studied the use of VRI modules for educating about topics 
including algorithms, the fundamentals of programming, and network 
security

● VRI were found to have many benefits
○ 76% of students responded that the visualizations helped them to 

understand the underlying concepts 
○ Allowed educators to better understand student misconceptions and 

misunderstandings which they could then correct
○ Less time overall (lecture + visualization) was required for students to 

learn the concepts



Challenges for visualizations

● Effective visualizations that enhance education are not easy to create

● Researchers discuss both the benefits and challenges of implementing 
visualizations in computer science education*

● Two major obstacles to widespread adoption of such visualization tools 
were identified
○ The learner may not find them to be educationally beneficial
○ The educator may find them to incur too much structural overhead to 

be worthwhile to implement in their course

*T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, 
and J. Á. Velázquez-Iturbide, “Exploring the role of visualization and engagement in Computer Science Education,” ACM 
SIGCSE Bulletin, vol. 35, no. 2, pp. 131–152, 2003. 



Designing good visualizations

● Effective visualization requires more than just showing a picture or 
animation of an algorithm, interactivity is critical

● The researchers define a set of best practices for designing visualizations
○ Include execution history
○ Support flexible execution control
○ Support custom input sets
○ Support learner-built visualizations
○ And more…

● These practices help to create a proper education tool with which the 
user can actively engage with the relevant concepts



Benefits of good visualizations

● When done well, these researchers also espouse the benefits of 
visualizations for computer science education
○ All respondents to one survey agreed that “using visualizations can 

help students learn computing concepts”
○ Improved levels of student participation
○ Educators reported a more enjoyable teaching experience
○ Students reported a more fun learning experience

● How does one quantify the benefit that a visualization provides?



Educational theory

● Bloom’s taxonomy of the cognitive domain is a hierarchical framework 
that is used to classify a learner’s depth of comprehension along six 
increasingly sophisticated level*

● This has been used in some form
for decades to define educational
objectives that educators strive
for their students to reach

[1]

*B. S. Bloom, Taxonomy of educational objectives: The classification of educational goals. New York City, New York: 
Longman, 1984. 



Educational theory

● A visualization tool can be judged by which level of Bloom’s taxonomy it 
allows students to reach

● Any visualization tool following the best practices defined earlier should 
bring students to the Application level
○ At this level, students can take concepts they have learned and apply 

them to new problems

● An even better tool would bring students to the Synthesis level
○ At this level students can generalize from many facts that they have 

learned and draw new conclusions by combining multiple concepts



Applications in computing theory

● The theory of computation is a prime candidate for visualization-reinforced 
learning

● The mathematical definitions for formal languages and finite automata can be 
difficult for students to understand on their own
○ They already have agreed-upon visual representations in literature, it just 

isn’t interactive

● The concepts of computational theory are foundational to much of computer 
science, so understanding it is critical

● Because the need is so great, some tools already exist (more on this later)



Background
Formal languages and finite state automata



Formal languages

● A formal language consists of a set of valid words constructed from a set of 
characters in the language’s alphabet according to certain rules

● Many applications in math, logic, linguistics, and computer science including 
programming language design and the theory of computation 

● There are a number of tools that can be used to define formal languages
○ Set notation
○ Grammars
○ Regular expressions
○ Finite state automata



Finite automata

● A finite-state automaton is a form of computer that defines a language by 
accepting or rejecting different words that are passed to it as inputs

● There are different forms of finite automata with different levels of 
computational power to accept different types of languages, including
○ Finite automata to accept regular languages
○ Pushdown automata to accept context-free languages
○ Turing machines to accept recursively enumerable languages

● They are all modeled as finite state machines with a finite set of states and 
transitions to move between those states based on certain criteria
○ Depending on how an automaton has been defined, it may have 

non-determinism which can alter its computing power in some cases



Simple finite automata

● Finite automata for accepting regular languages (NFAs and DFAs) are defined 
as a 5-tuple (Q, Σ, σ, q0, F) where
○ Q is a finite set of states
○ Σ is a finite set of tokens called the alphabet
○ σ is the transition function mapping Q ✕ Σ → Q
○ q0 is the initial state
○ F ⊆ Q is the set of accept states

● The language constructed of all words that are the character A followed by 
any amount of Bs followed by another A could be defined by the automaton
({s0, s1, s2}, {A, B}, f, s0, {s2})
Where f is the transition function mapping (s0, A) → s1, (s1, B) → s1, (s1, A) → s2
Since this transition function does not contain transitions for all combinations of states 
and alphabet characters, the automaton is non-deterministic



Simple finite automata

● This finite automaton ({s0, s1, s2}, {A, B}, f, s0, {s2}) where f is the transition 
function mapping (s0, A) → s1, (s1, B) → s1, (s1, A) → s2 can be represented 
visually as a directed graph

s0 s1 s2
A A

B

This is an 
accept state

This is the 
initial state

This is a 
transition



Background
JFLAP



JFLAP

● The Java Formal Languages and Automata Package (JFLAP) is a Java 
program whose development began in 1990 at Rensselaer Polytechnic 
Institute

● Allows for the construction and simulation of different types of finite state 
automata, as well as regular expressions and grammars

● Downloaded over 64,000 times by people in 161 countries, and is used in over 
20,000 college courses (including at OSU!)



JFLAP



The negatives of JFLAP

● Technological overhead
○ Students need to install a third-party program and JVM
○ Can’t use Chromebooks or mobile devices

● Functionality
○ Lacks some educationally useful algorithms like product 

automata and cycle detection

● Usability
○ User interface reflects the time it was made
○ Generally only one way to achieve anything
○ Missing quality of life features like keyboard shortcuts, editor 

tabs, and good layout algorithms



The goal

● Create a modern, accessible tool for constructing and simulating finite 
state automata
○ Support non-deterministic finite automata, pushdown automata, 

and Turing machines
○ Implement useful algorithms to demonstrate core concepts of 

computing theory

● Follow best practices for visualization programs
○ High degree of user control for construction and execution
○ Easy for instructors to integrate
○ Avoid student frustration

● Allow users to reach at least the Application stage of Bloom’s taxonomy 
and hopefully the Synthesis stage



Implementation



Technologies

● jsFLAP: The JavaScript Formal Languages and Automata Package

● Implemented using HTML5, CSS3, and JavaScript as well as the jQuery 
library

*Wikimedia Commons



Design strategy

● Composed of compartmentalized, object-oriented modules

● Code is documented and freely available on GitHub under the MIT license

● High extensibility through modifying modules or adding new ones
○ Should allow customization to suit course-specific needs or to 

connect to existing systems



Using jsFLAP

● All code is run in the client’s browser, no external server connection is 
required

● Can be accessed at elijahcirioli.com/jsflap, embedded within another 
site, hosted statically by a school, or packaged into an executable so 
that students will not require an internet connection 

● Only thing required is a modern-enough browser and possibly an 
internet connection depending on how it is hosted



Development Timeline

● Work began in October 2021 and lasted approximately 11 months

● All originally-intended functionality is present
○ Three types of automata plus, two types of parsing, and many tools

● Additional development may occur in the future to fix bugs and add 
features

● The goal was to create software that is easy to come back to and easy for 
others to modify



Features



Automata construction

● The core functionality revolves around constructing finite state 
automata by clicking and dragging to create states and transitions
○ There are various tools and keyboard shortcuts that can help 

with this

● When starting the program, the user gets a choice for what kind of 
automaton they wish to create
○ Finite state automaton
○ Pushdown automaton
○ Turing machine



Simulation

● There are two modes of simulation
○ Multiple 
○ Step-by-step

● Simulation outcomes depend on what type of automaton is being 
simulated
○ Standard and pushdown automata return whether a given 

word is in their language
○ Turing machines show tape transformations and whether the 

machine halted (within a set amount of time)

● All simulations update in real-time



Messages

● The importance of features that decrease user frustration should 
not be discounted

● The editor features a messages window that updates in real time 
with different information about the automaton being constructed
○ What type of automaton (including non-determinism)
○ The alphabet
○ Whether it contains cycles

● Warnings for common mistakes
○ Unreachable states
○ Lack of initial state
○ Lack of any final states



Usability

● There are a number of features focused on improving the user 
experience
○ Copy/paste
○ Undo/redo
○ Auto saving
○ Editor themes
○ Keyboard shortcuts
○ Multiple selection
○ Editor panning and zooming (including auto zoom)
○ Optionally snap to grid
○ Multiple ways to access all tools
○ Multiple layout algorithms to make automata look nicer



Equivalence

● NFA to DFA conversion tool
○ Convert any non-deterministic finite automaton to a 

deterministic finite automaton
○ Demonstrates their equal computing power

● Compare equivalence of two automata
○ Show that multiple automata can represent the same 

language
○ Test correctness of student solutions
○ Again show NFA and DFA correspondence



Regular expressions

● Input regular expressions and generate equivalent NFAs 

● Demonstration of equivalence between representations for regular 
languages

● Combining concepts to promote synthesis learning



Product automata

● Constructs the cartesian product automaton from two finite 
automata

● Perform set operations on their final states to perform the same 
operations on the languages they accept
○ Union, intersection, difference
○ Difference can be used prove equivalence

● Deepen student understanding of connection between finite 
automata and the languages they represent, as well as providing 
more tools to solve problems



Future Improvements
Accessibility



Accessibility

● Great work was put in to make jsFLAP accessible, but it should 
remain a key area of focus for future development
○ Tooltips, color settings, user-driven timing

● Reliance on mouse

● Improved support for screen readers



Future Improvements
Functionality



Grammars

● Grammars are another common way of representing formal 
languages

● They are not graph-based at all, so they would require a whole new 
suite of interfaces

● Supported in JFLAP

● Functionality to convert between automata and grammars in both 
directions



Proofs

● Currently, jsFLAP has functionality for students to prove concepts 
to themselves, but no formalized proofs that walk them through 
that concept

● Walk students through using the pumping lemma to show that a 
language is not regular

● Demonstrate the halting problem for Turing machines

● Broadly moves jsFLAP from an educational tool to a learning 
platform



Educational platform

● Currently jsFLAP is a tool used within an educational context rather 
than a place that students can learn computing theory concepts 
without needing any other resources

● Would need to provide users with lessons and challenges to teach 
different concepts
○ Could either be preprogrammed or specified in some file 

format

● Requires system for formally evaluating student work

● This would be a large undertaking, but it could be very powerful if 
done well



Educational Usage



Use cases

● In an educational context jsFLAP has many use cases
○ Live demonstrations
○ In-class activities
○ Homework assignments
○ Create graphics for slideshows and textbooks 

● Cover both basic and advanced topics

● Adding visualization to courses that currently lack it

● Replacing JFLAP
○ Interoperable file formats
○ Feature differences



Specific courses

● jsFLAP is already being used by professor Xanda Schofield for the 
finite automata unit of their introductory computer science class at 
Harvey Mudd College
○ They have connected jsFLAP to their autograding system, 

demonstrating its extensibility

● Oregon State University could follow Harvey Mudd’s lead by 
replacing JFLAP with jsFLAP in the CS 321 Theory of Computation 
undergraduate course



Conclusion



Conclusion

● Effective visualization tools can greatly benefit students, especially 
when learning about abstract topics

● Theory of computation is foundational for much of computer 
science, so jsFLAP was created as a tool to construct and simulate 
different types of finite state automata

● Provides an easy way for students to engage with the material in a 
hands-on manner
○ Work through misconceptions
○ Apply practically what was once theoretical



Conclusion

● While not the first tool for this purpose, jsFLAP follows best 
practices in order to be the most effective learning tool
○ Easy for instructors to integrate into their curriculum
○ Easy for students to use and access
○ Engaging, student-driven visualizations
○ Synthesis of multiple concepts

● Extensible and customizable to suit different learning 
environments

● jsFLAP has potential to benefit students at all levels of computer 
science education


